

Native Gluconobacter sp. D-Fructose Dehydrogenase

Cat. No. NATE-0185

Lot. No. (See product label)

Introduction

Description D-fructose dehydrogenase is a heterotrimeric membrane-bound enzyme commonly

seen in various Gluconobacter sp. especially in Gluconobacter japonicus

(Gluconobacter industrius). It has a molecular mass of ca. 140 kDa, consisting of subunits I (67kDa), II (51 kDa), and III (20 kDa) and catalyzes the oxidation of D-fructose to produce 5-keto-D-fructose. The enzyme is a flavoprotein-cytochrome c complex with subunits I and II covalently bound to flavin adenine dinucleotide

(FAD) and heme C as prosthetic groups, respectively.

Applications D-fructose dehydrogenase is used as a biosensor to detect the presence of D-

fructose. This enzyme is also used in a number of basic research projects to examine the electrochemical properties of enzyme-catalyzed electrode reactions called bioelectrocatalysis. This enzyme is useful for enzymatic determination of D-

fructose in clinical analysis.

Synonyms EC 1.1.99.11; fructose 5-dehydrogenase; D-fructose dehydrogenase; D-fructose:

(acceptor) 5-oxidoreductase; 37250-85-4

Product Information

Source Gluconobacter sp.

Form lyophilized powder. supplied as a lyophilized powder containing approx 80%

stabilizers, sugars, amino acids and BSA

EC Number EC 1.1.99.11

CAS No. 37250-85-4

Molecular Weight mol wt ~140 kDa

Activity > 20 units/mg solid; 400-1,200 units/mg protein

Isoelectric point 5.0 ± 0.1

pH Stability pH 4.0 - 6.0 (25°C, 16hr)

Optimum pH 4

Thermal stability Below 40°C (pH 4.5, 15min)

Optimum temperature 37°C

Michaelis Constant 5 x 10⁻3M (D-Fructose)

Inhibitors Ag+, Hg++, SDS

Unit Definition One unit will convert 1.0 µmole D-fructose to 5-ketofructose per min at pH 4.5 at

37°C.

Storage and Shipping Information

Storage –20°C

Tel: 1-631-562-8517 1-516-512-3133 **Email:** info@creative-enzymes.com 1/2