

Native Rabbit Pyruvate Kinase

Cat. No. NATE-0567 Lot. No. (See product label)

Introduction	
Description	Pyruvate kinase is an enzyme involved in glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP, yielding one molecule of pyruvate and one molecule of ATP.
Applications	Pyruvate kinase from rabbit muscle has been used in a structural study to understand the reaction mechanism of the final step in glycolysis. It has also been used in a study to investigate ATP-dependent phosphorylation of α -substituted carboxylic acids.
Synonyms	Pyruvate kinase; EC 2.7.1.40; 9001-59-6; phosphoenolpyruvate kinase; phosphoenol transphosphorylase; pyruvate kinase (phosphorylating); fluorokinase; fluorokinase (phosphorylating); pyruvic kinase; pyruvate phosphotransferase; ATP:pyruvate 2-O-phosphotransferase
Product Information	
Species	Rabbit
Source	Rabbit muscle
Form	Type I, ammonium sulfate suspension, Suspension in 3.2 M (NH4)2SO4 solution, pH 6; Type II, lyophilized powder; Type III, buffered aqueous glycerol solution, Solution in 50% glycerol containing 0.01 M phosphate, pH 7.0.
EC Number	EC 2.7.1.40
CAS No.	9001-59-6
Molecular Weight	237 kDa and exists as a tetramer of four equal subunits of molecular weight 57 kDa.
Activity	350-600 units/mg protein
Isoelectric point	7.6
Optimum pH	~7.5
Optimum temperature	25°C
Pathway	Adenine ribonucleotide biosynthesis, IMP => ADP,ATP, organism-specific biosystem (from KEGG) Adenine ribonucleotide biosynthesis, IMP => ADP,ATP, conserved biosystem (from KEGG) Biosynthesis of amino acids, organism-specific biosystem (from KEGG) Biosynthesis of amino acids, conserved biosystem (from KEGG) Carbon metabolism, organism-specific biosystem (from KEGG) Carbon metabolism, conserved biosystem (from KEGG) Central carbon metabolism in cancer, organism- specific biosystem (from KEGG) Central carbon metabolism in cancer, conserved biosystem (from KEGG)

Function

<i>i</i> unction	backbone amide protons and the associated rate constants that are altered when
	PKM binds either the allosteric inhibitor phenylalanine or a nonallosteric analogue of the inhibitor. Carboxyl group of the substrate phosphoenolpyruvate is
	responsible for energetic coupling with phenylalanine binding in the allosteric sites. Bound mono-and divalent cations influence the binding of the substrate
	phosphoenolpyruvate to pyruvate kinase, in particular the binding-induced structural change of the protein and the conformation and interaction of bound phosphoenolpyruvate. The structure of rabbit muscle pyruvate kinase-Mn-pyruvate- proline complex reported herein demonstrates that proline binds specifically to the
	allosteric site of muscle pyruvate kinase.
Unit Definition	One unit will convert 1.0 μ mole of phospho (enol)pyruvate to pyruvate per min at pH 7.6 at 37°C.
Storage and Shipping Information	
Storage	–20°C.