

Native Hansenula sp. Alcohol Oxidase

Cat. No. NATE-0046

Lot. No. (See product label)

Introduction

Description In enzymology, an alcohol oxidase (EC 1.1.3.13) is an enzyme that catalyzes the

chemical reaction:a primary alcohol + O2↔ an aldehyde + H2O2. Thus, the two substrates of this enzyme are primary alcohol and O2, whereas its two products are aldehyde and H2O2. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with oxygen as acceptor. It

employs one cofactor, FAD.

Applications Alcohol oxidase is used to catalyze the oxidation of short-chain, primary, aliphatic

alcohols to their respective aldehydes. It may be used to study methanol $% \left(1\right) =\left(1\right) \left(1\right) \left$

metabolism is yeasts, such as Candida, Pichia, and Hansenula. It is useful to study

protein translocation into peroxisomes.

Synonyms EC 1.1.3.13; 9073-63-6; alcohol oxidase; ethanol oxidase; Alcohol:oxygen

oxidoreductase

Product Information

Source Hansenula sp.

Form vacuum-dried powder

EC Number EC 1.1.3.13

CAS No. 9073-63-6

Molecular Weight ∼600 kDa

Activity > 0.6 units/mg solid

pH Stability pH Range: 5.5-8.5

Optimum pH 8.5

Inhibitors
1,4-butynediol (irreversible), propargyl alcohol (irreversible), cyclopropanol,

cyclopropanone (suicide substrate), formaldehyde, H2O2, hydroxylamine, KBr, KCN,

1/1

methanol (substrate inhibitor), NaN3, PCMB, propynal, urea, 4-

chloromercuribenzoic acid

Unit Definition One unit will oxidize 1.0 μmole of methanol to formaldehyde per min at pH 7.5 at

25°C.

Storage and Shipping Information

Stability –20°C

Tel: 1-631-562-8517 1-516-512-3133 **Email:** info@creative-enzymes.com