

Isocitrate dehydrogenase (NAD+) from Bacteria, Recombinant

Cat. No. NATE-1041

Lot. No. (See product label)

Introduction

Description Isocitrate dehydrogenase (IDH) is an enzyme that catalyzes the oxidative

decarboxylation of Isocitrate, producing alpha-ketoglutarate (α -ketoglutarate) and CO2. This is a two-step process, which involves oxidation of Isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms:IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the

mitochondrion and peroxisome.

Synonyms Beta-ketoglutaric-isocitric carboxylase; IDH; Isocitrate dehydrogenase (NAD);

Isocitric acid dehydrogenase; Isocitric dehydrogenase; NAD dependent Isocitrate dehydrogenase; NAD isocitric dehydrogenase; NAD-

1/1

linked Isocitrate dehydrogenase; NAD-specific Isocitrate dehydrogenase; Nicotinamide adenine dinucleotide Isocitrate dehydrogenase; EC 1.1.1.41

Product Information

Species Bacteria

Source E. coli

Form Lyophilized powder

EC Number EC 1.1.1.41

CAS No. 9001-58-5

Molecular Weight 40 kD (SDS-PAGE)

Activity > 40 Units / mg

Contaminants Isocitrate dehydrogenase (NADP+) < 5%

pH Stability 5.5 - 8.0

Optimum pH 8.0 - 9.0

Thermal stability <45°C

Optimum temperature 60°C

Storage and Shipping Information

Storage Below -20°C