

## Cellulase from Cellvibrio mixtus, Recombinant

Cat. No. NATE-1200

Lot. No. (See product label)

## Introduction

**Description** Cellulase is any of several enzymes produced chiefly by fungi, bacteria, and

protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides; specifically, the hydrolysis of the 1,4-beta-D-glycosidic linkages in cellulose, hemicellulose, lichenin, and cereal beta-D-glucans. Cellulases break down the cellulose molecule into monosaccharides ("simple sugars") such as beta-glucose, or shorter polysaccharides and oligosaccharides. The name is also used for any naturally occurring mixture or complex of various such enzymes, that

act serially or synergistically to decompose cellulosic material.

**Synonyms** Cellulase, thermostable; 1,4-(1,3:1,4)-β-D-Glucan 4-glucano-hydrolase; EC 3.2.1.4;

Cellulase; endo-1,4- $\beta$ -D-glucanase;  $\beta$ -1,4-glucanase;  $\beta$ -1,4-endoglucan hydrolase;

celluase A; cellulosin AP; endoglucanase D; alkali cellulase; cellulase A 3;

celludextrinase; 9.5 cellulase; avicelase; pancellase SS

## **Product Information**

**Source** Cellvibrio mixtus ATCC 12120

Form Supplied in 35 mM HEPES buffer, pH 7.5, containing 750 mM NaCl, 200 mM

imidazole, 3.5 mM CaCl2 and 25 % (v/v) glycerol.

**EC Number** EC 3.2.1.4

*CAS No.* 9012-54-8

*Molecular Weight* 33835.5 Da

**Purity** > 95 % as judged by SDS-PAGE

**Activity** 950 U/mg

**Concentration** 3325 U/ml

**Optimum pH** 7.5 (stable from 6 – 8.5)

**Optimum temperature** 37°C (stable up to 45°C)

 $\textbf{\textit{Unit Definition}} \qquad \qquad \text{One unit is defined as the amount of enzyme required to release 1} \\ \mu \text{mol of glucose-} \\$ 

reducing-sugar equivalents per minute from barley β-glucan in 50 mM Tris-HCl, pH

1/1

7.5, 5 mM CaCl2, at 37°C

## Storage and Shipping Information

**Store** at -20°C (shipped at room temperature)