

Native Microorganism Glycerol Kinase

Cat. No. DIA-149

Lot. No. (See product label)

Introduction

Description The activity of glycerol kinase is found widely in nature. In microorganisms GK makes possible the

utilization of glycerol as a carbon source. In mammals the enzyme represents a juncture of sugar and fat metabolism; The enzyme is important to the clinical chemist in the determination of glycerol. GK is also useful in the assay of glyceraldehydes and dihydroxyacetone following their quantitative reduction

to glycerol with sodium borohydride.

Applications This enzyme is useful for enzymatic determination of glycerol and triglyceride when coupled with

glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate oxidase or pyruvate kinase and lactate

dehydrogenase, lipoprotein lipase in clinical analysis.

Synonyms glycerokinase; GK; ATP: glycerol-3-phosphotransferase; glycerol kinase phosphorylating; glyceric

kinase; EC 2.7.1.30

Product Information

Source Microorganism

Appearance White amorphous powder, lyophilized

Form Freeze dried powder

EC Number EC 2.7.1.30

CAS No. 9030-66-4

Molecular

approx. 220 kDa (by gel filtration)

Weight

Activity Gradelll 30 U/mg-solid or more

Contaminants Catalase $< 1.0 \times 10^{-1}\%$ NADH oxidase $< 1.0 \times 10^{-3}\%$ Adenosine triphosphatase $< 1.0 \times 10^{-3}\%$

Isoelectric

point

4.3

pH Stability pH 5.5-10.0 (25°C, 20hr)

Optimum pH 10

Thermal

below 65°C (pH 7.5, 30min)

stability

Optimum 7

70°

temperature Michaelis

 9.4×10^{-5} M (Glycerol), 1.3×10^{-5} M (ATP), 2.1×10^{-3} M (Dihydroxyacetone)

Constant Structure

Four subunits of approx. 58,000

Inhibitors p-Chloromercuribenzoate, Hg⁺⁺, Ag⁺

Tel: 1-631-562-8517 1-516-512-3133 **Email:** info@creative-enzymes.com

1/2

Storage and Shipping Information

Stability Stable at-20°C