Enzymatic Assay of PYRUVATE OXIDASE
(EC 1.2.3.3)

PRINCIPLE:

Pyruvate + O₂ + Pᵢ → Acetylphosphate + CO₂ + H₂O
Pyruvate Oxidase

FAD, TPP, Mg²⁺

2H₂O₂ + 4-Aminoantipyrine + EHSPT → Quinoneimine dye + 4H₂O

Abbreviations used:
Pᵢ = Inorganic Phosphate
FAD = Flavin Adenine Dinucleotide
TPP = Thiamine Pyrophosphate
EHSPT = N-Ethyl-N-(2-Hydroxy-3-Sulfopropyl)-m-Toluidine
POD = Peroxidase

CONDITIONS: T = 37°C, pH 5.7, A₅₅₀nm, Light path = 1 cm

METHOD: Spectrophotometric Rate Determination

REAGENTS:

A. 150 mM Potassium Phosphate Buffer, pH 5.9 at 37°C
 (Prepare 100 ml in deionized water using Potassium
 Phosphate, Monobasic, Anhydrous,
 Adjust to pH 5.9 at 37°C with 1 M KOH.)

B. 0.15 mM Flavin Adenine Dinucleotide Solution (FAD)
 (Prepare 10 ml in deionized water using Flavin Adenine
 Dinucleotide, Disodium Salt
 PREPARE FRESH.)

C. 3 mM Cocarboxylase (Thiamine Pyrophosphate) Solution
 (TPP)
 (Prepare 10 ml in deionized water using Cocarboxylase,
 PREPARE FRESH.)

D. 7.4 mM 4-Aminoantipyrine Solution (4-AAP)
 (Prepare 25 ml in deionized water using
 4-Aminoantipyrine, Free Base.)

E. Peroxidase Enzyme Solution (POD)
 (Immediately before use, prepare a solution containing
 50 purpurogallin units/ml in deionized water using
 Peroxidase.)
Enzymatic Assay of PYRUVATE OXIDASE
(EC 1.2.3.3)

REAGENTS: (continued)

F. 150 mM Magnesium Sulfate Solution (MgSO$_4$)
(Prepare 5 ml in deionized water using Magnesium Sulfate, Heptahydrate.)

G. 300 mM Sodium Pyruvate Solution (Pyr)
(Prepare 1 ml in deionized water using Pyruvic Acid, Sodium Salt.)

H. 0.3% (w/v) N-Ethyl-N-(2-Hydroxy-3-Sulfopropyl)-m-Toluidine Solution (EHSPT)
(Prepare 25 ml in deionized water using N-Ethyl-N-(2-Hydroxy-3-Sulfopropyl)-m-Toluidine, Sodium Salt)

I. 50 mM Potassium Phosphate Buffer, pH 5.7 at 37°C
(Enzyme Diluent)
(Prepare 50 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Adjust to pH 5.7 at 37°C with 1 M KOH.)

J. 15 mM Ethylenediaminetetraacetic Acid Solution (EDTA)
(Prepare 25 ml in deionized water using Ethylenediaminetetraacetic Acid, Disodium Salt, Dihydrate)

K. Pyruvate Oxidase Enzyme Solution
(Immediately before use, prepare a solution containing 0.2 - 0.4 unit/ml of Pyruvate Oxidase in cold Reagent I.)

PROCEDURE:

Prepare a reaction cocktail by pipetting (in milliliters) the following reagents into a suitable container:

Reagent A (Buffer) 10.00
Reagent D (4-AAP) 2.00
Reagent H (EHSPT) 2.00
Reagent C (TPP) 2.00
Reagent B (FAD) 2.00
Reagent J (EDTA) 2.00
Reagent F (MgSO$_4$) 2.00
Reagent E (POD) 3.00

Mix by swirling.
Enzymatic Assay of PYRUVATE OXIDASE
(EC 1.2.3.3)

PROCEDURE: (continued)

Pipette (in milliliters) the following reagents into suitable containers:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Cocktail</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Reagent G (Pyr)</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 37°C. Monitor the A$_{550\text{nm}}$ until constant, using a suitably thermostatted spectrophotometer. Then add:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent I (Enzyme Diluent)</td>
<td>------</td>
<td>0.10</td>
</tr>
<tr>
<td>Reagent K (Enzyme Solution)</td>
<td>0.10</td>
<td>-------</td>
</tr>
</tbody>
</table>

Immediately mix by inversion and record the increase in A$_{550\text{nm}}$ for approximately 5 minutes. Obtain the r A$_{550\text{nm}}$/min using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

\[
\text{Units/ml enzyme} = \frac{(r \ A_{550\text{nm}}/\text{min Test} - r \ A_{550\text{nm}}/\text{min Blank})(3.1)(df)}{(36.88)(0.1)(0.5)}
\]

3.1 = Volume (in milliliters) of assay
df = Dilution factor
36.88 = Millimolar extinction coefficient of quinoneimine dye under the assay conditions
0.1 = Volume (in milliliter) of enzyme used
0.5 = Factor based on the equation that one mole of H$_2$O$_2$ produces half a mole of quinoneimine dye

\[
\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}
\]

UNIT DEFINITION:

One unit will produce 1.0 µmole of H$_2$O$_2$ per minute at pH 5.7 at 37°C during the conversion of pyruvate and phosphate to acetylphosphate and CO$_2$.
Enzymatic Assay of PYRUVATE OXIDASE
(EC 1.2.3.3)

FINAL ASSAY CONCENTRATIONS:

In a 3.10 ml reaction mix, the final concentrations are
50 mM potassium phosphate, 0.48 mM 4-aminoantipyrene,
0.02% (w/v) N-ethyl-N-(2-hydroxy-3-sulfopropyl)-m-
toluidine, 0.2 mM cocarboxylase, 0.0097 mM flavin adenine
dinucleotide, 0.97 mM ethylenediaminetetraacetic acid, 9.7
mM magnesium sulfate, 48 mM sodium pyruvate, 15 units
peroxidase, and
0.02 - 0.04 unit pyruvate oxidase.

REFERENCES:

of Bacteriology 160, 273-278.

NOTES:

1. This assay is based on the cited reference.

2. Peroxidase Unit Definition: One unit will form 1.0 mg
purpurogallin from pyrogallol in 20 seconds at pH 6.0
at 25°C.

3. Where OUR Product or Stock numbers are specified,
equivalent reagents may be substituted.

This procedure is for informational purposes. For a current copy of our quality control
procedure contact our Technical Service Department.