Enzymatic Assay of PHOSPHATASE, ALKALINE
(EC 3.1.3.1)
Glycine Assay

PRINCIPLE:

\[\text{p-Nitrophenyl Phosphate} \xrightarrow{\text{Alkaline Phosphatase}} \text{p-Nitrophenol} + \text{P}_i \]

CONDITIONS: \(T = 37^\circ \text{C}, \) \(\text{pH} = 10.4, \) \(A_{410\text{nm}}, \) Light path = 1 cm

METHOD: Spectrophotometric Stop Rate Determination

REAGENTS:

A. 100 mM Glycine Buffer with 1 mM Magnesium Chloride, pH 10.4 at 37°C
 (Prepare 50 ml in deionized water using Glycine, and Magnesium Chloride Hexahydrate, Adjust to pH 10.4 at 37°C with 1 M NaOH. PREPARE FRESH.)

B. 15.2 mM p-Nitrophenyl Phosphate Solution (PNPP)
 (Prepare 2 ml in deionized water using Phosphatase Substrate. PREPARE FRESH.)

C. Phosphatase, Alkaline Enzyme Solution
 (Immediately before use prepare a solution containing 0.1 - 0.2 units/ml of Alkaline Phosphatase in cold deionized water.)

D. 20 mM Sodium Hydroxide Solution (NaOH)
 (Prepare 100 ml in deionized water using Sodium Hydroxide.)
Enzymatic Assay of PHOSPHATASE ALKALINE
(EC 3.1.3.1)
Glycine Assay

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deionized Water</td>
<td>----</td>
<td>0.10</td>
</tr>
<tr>
<td>Reagent A (Buffer)</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Reagent B (PNPP)</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 37°C. Monitor the $A_{410\text{nm}}$ until constant, using a suitably thermostatted spectrophotometer. Then add:

Reagent C (Enzyme Solution) 0.10 ----

Immediately mix by inversion and incubate for exactly 10 minutes. Then add:

Reagent D 10.00 10.00

Record the $A_{410\text{nm}}$ for both the test and blank.

CALCULATIONS:

$$\text{Units/mg protein} = \frac{(\Delta A_{410\text{nm}} \text{ Test} - \Delta A_{410\text{nm}} \text{ Blank}) \times (11.1)}{(10) \times (18.3) \times (\text{mg protein/RM})}$$

11.1 = total volume
10 = Time of Assay (Unit Definition)
18.3 = Millimolar extinction coefficient for p-nitrophenol
RM = Reaction Mix

UNIT DEFINITION:

One unit will hydrolyze 1.0 µmole of p-nitrophenyl phosphate per minute at pH 10.4 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 1.1 ml reaction mix, the final concentrations are 45 mM glycine, 0.45 mM magnesium chloride, 6.9 mM p-nitrophenyl phosphate and 0.01 to 0.02 units alkaline phosphatase.